Different activation of ERK1/2 and p38 with hyperbaric oxygen in dorsal root ganglion.
نویسندگان
چکیده
Prolonged hyperbaric oxygen exposure causes pulmonary and nervous system toxicity, although hyperbaric oxygen treatment has been used to treat a broad spectrum of ailments. In the current study, animals have been exposed to 100% oxygen at a pressure of 2.3 atmospheres absolute (ATA) for two, six and 10 hours or 0.23 MPa normoxic hyperbaric nitrogen (N2-O2 mixture, oxygen partial pressure = 21 kPa) for 10 hours. Then we investigated whether ERK1/2 and p38 had been activated in the dorsal root ganglion (DRG) by hyperbaric conditions. Using Western blot analysis, we found that the phosphorylation levels of ERK1/2 (phospho-ERK1/2) increased significantly (p < 0.05, n = 3 for each group) in the six-hour treatment of 100% oxygen at a pressure of 2.3 ATA. The phosphorylation levels of p38 (phospho-p38) increased significantly (p < 0.05, n = 3 for each group) in the 10-hour treatment of 100% oxygen at a pressure of 2.3 ATA--which was consistent with time course changes of an apoptosis marker, cleavage caspase-3--while the phospho-p38 decreased in the 10 hours of N2-O2 mixture. These results demonstrate that the ERK1/2 and p38 have been differently activated in the DRG by prolonged hyperbaric oxygen exposure.
منابع مشابه
Signaling pathways involved in HSP32 induction by hyperbaric oxygen in rat spinal neurons
Spinal cord injury (SCI) is a debilitating disease, effective prevention measures are in desperate need. Our previous work found that hyperbaric oxygen (HBO) preconditioning significantly protected rats from SCI after stimulated diving, and in vitro study further testified that HBO protected primary cultured rat spinal neurons from oxidative insult and oxygen glucose deprivation injury via heat...
متن کاملThe Neuroprotective Effect of Nepeta menthoides on Axotomized Dorsal Root Ganglion Sensory Neurons in Neonate Rats
Background and Objective: Sensory neurons have critical role in improvement of functional outcome of any neuroprotective strategy. The herbal medicine Nepeta menthoides has been reported to have anti-apoptotic effect on axotomized spinal motoneurons. In the present study, the putative neuroprotective effect of Nepeta menthoides on the axotomized dorsal root ganglion sensory neurons in neonate r...
متن کاملMorphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat
Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...
متن کاملThe Effect of Swimming Training on Ganglionic Cells Population and Class III Beta-Tubulin Protein in Dorsal Root Ganglion of Wistar Male Rats: An Experimental Study
Background and Objectives: β-tubulin protein is the protein that has a key role in plasticity and neurogenesis in the mature neurons. On the other hand, endurance training is effective in neuron life and lifespan. The present study aimed to investigate the effect of 20 days swimming training on class III β-tubulin and the number of ganglion cells in DRG of Wistar male rats. Materials and Me...
متن کاملTanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling
Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Undersea & hyperbaric medicine : journal of the Undersea and Hyperbaric Medical Society, Inc
دوره 38 2 شماره
صفحات -
تاریخ انتشار 2011